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amplituder, while the dynamic exponentz and static exponent 1/n vary with the strength of disorder.
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I. INTRODUCTION

The effect on the critical behavior of adding quenched
disorder to statistical systems has been intensively investi-
gated in the last two decades, both theoretically and numeri-
cally. According to the earlier works[1–4], quenched disor-
der could produce rounding of a first-order phase transition
and thus induce a second-order one. Along this understand-
ing, many activities in the last years have been devoted to the
random-bond Potts(RBP) model and some variants[5–27].
It is exactly known that the pure two-dimensional(2D) Potts
model undergoes a first-order transition forq.4, while a
continuous one forqø4. Therefore, the 2D RBP model
serves as a good laboratory for examining the effect of dis-
order. For a review of the Potts model, see Ref.[28].

A decade ago, Chen, Ferrenberg, and Landau performed a
Monte Carlo simulation of the 2D eight-state RBP model. A
second-order phase transition was observed. From the nu-
merical values of the critical exponents, the 2D RBP model
was believed to be in the same universality class as the pure
2D Ising model[5,6]. Similar conclusions were obtained for
the random-bond Ashkin-Teller model, four-state RBP model
and random-bond Ising model[7]. There is also experimental
evidence claiming the same for the four-state Potts model
[8].

However, contradictive results were obtained by Ludwig
[9] and Dotsenkoet al. [10]. It was argued with renormal-
ization group methods that a new random-bond fixed point
exists for q.2, whose critical behavior is not Ising like.
Later, Chatelain and Berche[27] performed numerical simu-
lations for the self-dual eight-state RBP model and observed
that the exponentsg /n andb /n are quite different from the
Ising values, but close to Cardy and Jacobsen’s prediction
with the transition matrix method[13]: that b /n varies con-
tinuously with q and n changes only weakly. From the nu-
merical simulations of the five-state RBP model, the mag-
netic exponent also indicates a new universality class[14]. In
the case of the three-state RBP model, whose pure version
exhibits a continue phase transition, Monte Carlo simulations
[15,16] suggest that while the ratiosg /n and b /n do not
change significantly, the exponentn changes continuously
with the strength of disorder. A recent numerical study of the

RBP model[17] givesq-dependence critical exponents, con-
sistent with that obtained with the transition matrix method
[22]. To summarize, the above analytical and numerical re-
sults support that the exponentn varies continuously with the
strength of disorder, whileb /n is more or less independent
of the strength of disorder. Both exponents suggest that the
2D RBP model is not in the same universality class as the 2D
Ising model.

On the other hand, it is interesting and important to inves-
tigate the effect of disorder on critical dynamics. The spin-
glass dynamics is a very important example. However, the
critical slowing down in numerical simulations of spin
glasses is so severe that we hardly simulate large lattices.
The RBP model may be a good model system for under-
standing the slow dynamics of disordered systems. Tradition-
ally, it was believed that universal dynamic scaling behavior
only exists in the long-time regime of the dynamics evolu-
tion. However, numerical simulations of the critical dynam-
ics of the RBP model in the long-time regime are not easy.
Little progress has been achieved in this direction.

In 1998, with renormalization group methods Janssen,
Schaub, and Schmittmann derived a dynamic scaling form
for the OsNd vector model, which is valid up to themacro-
scopic short-time regime, after a microscopic time scaletmic
[29]. The dynamic process they considered is that the system
initially at a very high temperature state with a small or zero
magnetization is suddenly quenched to the critical tempera-
ture and then released to dynamic evolution of modelA. It is
important that a new independent critical exponentu be in-
troduced to describe the scaling behavior of the initial mag-
netization. Such a short-time dynamic scaling behavior has
been numerically verified[30–34], and it is also consistent
with relevant theories and experiments in spin glasses
[30,35,36]. In spin glasses, the remanent magnetization cor-
responds to the autocorrelation function in the regular Ising
systems without disorder. Furthermore, the short-time dy-
namic scaling can be extended to the dynamic relaxation
starting from an ordered state[32,37,38].

More interestingly, based on short-time dynamic scaling,
it is possible to extract not only the dynamic exponents, but
also the static exponents as well as the critical temperature
[32,39–41]. Since the measurements are carried out in the
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short-time regime of the dynamic evolution, the method does
not suffer from a critical slowing down. What we pay for this
approach is that the measurements of the dynamic exponents
and static exponents cannot be separated. Therefore, the sta-
tistical errors of the static exponents include those from the
dynamic exponents. However, if we are also interested in the
dynamic behavior, the short-time dynamic approach is rather
useful.

A first numerical study based on the short-time dynamic
approach suggests that the critical dynamic behavior of the
2D RBP model appears also not in the universality class of
the 2D Ising model[18]. However, the numerical simulations
are not very systematic and complete. The updating time is
limited to 300 or 500 Monte Carlo time steps, which is not
sufficiently long for a slow dynamics with disorder. The ob-
tained exponents are not so accurate, and especially, the es-
timate of the exponentu looks problematic. The probable
reason is that the exponentu may not be estimated by mea-
suring the maximum magnetization of its eight components
in the nonequilibrium state.

The purpose of this article is to present a systematic study
of the short-time critical dynamics of the eight-state random-
bond Potts model in two dimensions. We will perform simu-
lations up to 150 000 Monte Carlo time steps, carefully ana-
lyze the dynamic scaling behavior, and provide relatively
accurate measurements of the critical exponents. We show
that the dynamic exponentz and the static exponent 1/n vary
with the strength of disorder.

The models and scaling analysis of the dynamic behavior
are described in Sec. II. Numerical simulations are presented
in Sec. III. The final section contains the conclusions.

II. MODEL AND DYNAMIC SCALING BEHAVIOR

A. Random-bond Potts model

The Hamiltonian of the two-dimensionalq-state Potts
model with quenched random interactions can be written as

−
1

kBT
H = o

ki,jl
Kijdsi,s j

, Kij . 0, s1d

where the spins takes the values 1 ,̄ q, d is the Kronecker
delta function, and the sum is over nearest-neighbor pairs on
a two-dimensional square lattice. The dimensionless cou-
plings Kij are selected from positive values ofK1 and K2
=rK1, with a strong to weak coupling ratior =K2/K1 called
the disorder amplitude, according to a bimodal distribution

PsKd = pdsK − K1d + s1 − pddsK − K2d. s2d

For p=0.5, the system isself-dualand the exact critical point
can be determined by[42]

seK1c − 1dseK2c − 1d = q, s3d

whereK1c andK2c are the corresponding critical values ofK1
and K2, respectively. The case ofr =1 corresponds to the
pure Potts model, and the critical point is located atKc

=lns1+Îqd. With an additional random-bond distribution,
however, new second-order phase transitions are induced for
any of theq-state Potts models and the new critical points are

determined according to Eq.(3) for different values of the
disorder amplituder and state parameterq.

In this paper, we study the self-dual casesp=0.5d of the
eight-state random-bond Potts model with the short-time dy-
namic approach. Monte Carlo simulations with a standard
Metropolis algorithm are performed on a two-dimensional
square lattices with periodic boundary conditions. For a re-
view of the short-time critical dynamics and its applications,
see Refs.[32,39].

The physical observables we measure are the time-
dependent magnetization, its second moment, autocorrela-
tion, and spatial correlation of theq-state Potts model, re-
spectively, defined as

Mstd =
q

sq − 1dL2Ko
i
Sdsistd,1

−
1

q
DL , s4d

Ms2dstd =
q2

sq − 1d2L4KFo
i
Sdsistd,1

−
1

q
DG2L , s5d

Astd =
1

L2Ko
i
Sdsis0d,sistd

−
1

q
DL , s6d

Csx,td =
1

L2Ko
i
Sdsistd,si+xstd −

1

q
DL , s7d

whereL is the lattice size.

B. Quench with ordered start

For a dynamic process quenched from a completely or-
dered state(an ordered start)—i.e., the initial magnetization
m0=1—we assume a universal dynamic scaling form in the
macroscopic short-timeregime. For thekth moment of the
magnetization, for example,

Mskdst,t,Ld = b−kb/nMskdsb−zt,b1/nt,b−1Ld, k = 1,2. s8d

Here t=sK1−K1cd /K1c, and b, n are the well-known static
critical exponents,z is the dynamic exponent, andb is an
arbitrary scale factor. This dynamic scaling form looks the
same as that in equilibrium or close to equilibrium, but now
it is expected to hold already when the dynamic system is
still far from equilibrium, after a time scaletmic which is long
enough in the microscopic sense.tmic is not universal. It is
only a few Monte Carlo time steps for some simple dynamic
systems, while can be hundreds or thousands of Monte Carlo
time steps for slow dynamics.

In general, for determination of the dynamic exponentz
and static exponents, a dynamic process starting from a com-
pletely ordered state can be more favorable than starting
from a completely disordered state, since the statistical fluc-
tuation is somewhat less, and especially the nonzero magne-
tization can be used for the scaling analysis. Assuming that
the lattice is sufficiently large, the dynamic scaling form of
the magnetizationMstd;Ms1dstd around the critical point is
written as
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Mst,td = t−c1Fst1/nztd, c1 = b/nz. s9d

If t=0, the magnetization decays by a power lawMstd
, t−c1. If tÞ0, the power-law behavior is modified by the
scaling functionFst1/nztd. From this fact, one determines the
critical point and the critical exponentb /nz. To estimate the
exponent 1/nz, we differentiate lnMst ,td and obtain

]t ln uMst,tdut=0 , tcl, cl = 1/nz. s10d

In order to estimate the dynamic exponentz independently,
we introduce a Binder cumulantU=Ms2d /M2−1, and the
finite-size scaling analysis shows that at the transition point

Ust,Ld , tc2, c2 = d/z. s11d

From Eqs.(9)–(11), we are able to extract all the static
exponentsb and n and the dynamic exponentz, which are
originally defined in equilibrium. The attractive feature of
the short-time dynamic approach is that we maypredict all
these exponents at the beginning of the time evolution and
therefore do not suffer from a critical slowing down.

C. Quench with disordered start

For a dynamic process quenched from a completely dis-
ordered state(a disordered start) with a zero orsmall initial
magnetizationm0, a generalized dynamic scaling form can
be written down, e.g., for thekth moment of the magnetiza-
tion:

Mskdst,t,m0,Ld = b−kb/nMskdsb−zt,b1/nt,bx0m0,b
−1Ld,

k = 1,2. s12d

Here x0 is an independent exponent describing the scaling
behavior ofm0, and it can be expressed with another expo-
nentu as

x0 = b/n + uz. s13d

Two interesting observables in this process are the auto-
correlation and the second moment of the magnetization. For
t=0 andm0=0, it is well known that[30,32]

Ms2dstd , ty, y = sd − 2b/nd/z. s14d

Careful analysis reveals[35] that the autocorrelation at the
transition point behaves like

Astd , t−l, l =
d

z
− u. s15d

Interesting here is that even thoughm0=0, the exponentu
still enters the autocorrelation. The behavior in Eq.(15) has
been confirmed in a variety of statistical systems[30,32].

In principle, one may also determine the exponent 1/nz
from Eq. (12) in a way described in the preceding subsec-
tion. However, the fluctuation here is larger.

Similarly, the scaling behavior of the equal-time spatial
correlation function att=0 is

Csx,td , t−2b/nzCsx/t1/z,1d. s16d

The dynamic exponentz and static exponentb /n can be also
extracted from the data collapse ofCsx,td. This needs, how-

ever, a very large lattice and sufficient samples for an aver-
age.

Finally, to extract the exponentu independently, we may
consider a small but nonzero initial magnetizationm0. From
the dynamic scaling in Eq.(12), it is easy to deduce that the
magnetization in the short-time regime obeys a power law

Mst,m0d , m0t
u. s17d

In many cases, the exponent is positive; i.e., the magnetiza-
tion undergoes a critical initial initial increase. In the past
decade, this phenomenon has been intensively discussed
both theoretically and numerically. Usually, this behavior can
be easily detected in Monte Carlo simulations. In the pres-
ence of disorder, however, this may not be the case.

III. NUMERICAL SIMULATIONS

We have performed Monte Carlo simulations with the
standard Metropolis algorithm. Taking into account the slow
dynamics induced by disorder and the effect of crossover
from the pure Potts model to with disorder, the maximum
updating time is taken to be from 10 000 to 150 000 Monte
Carlo time steps, depending on the strength of of disorder
and the initial conditions. The results are presented with a
lattice sizeL=280. To investigate the possible finite-size ef-
fects, some simulations have been also performed forL
=140. Samples of the initial configuration for averaging are
from 5000 to 10 000. To estimate the errors, samples are
divided into some subgroups. In addition, errors induced by
fluctuations along the time direction are also taken into ac-
count.

A. Continuous phase transition

Aizenman and Wehr[4] have rigorously proved that quite
generally fordø2 anarbitrarily weak amount of quenched
bond randomness leads to elimination of any discontinuity in
the density of the variable conjugate to the fluctuating pa-
rameter, but the signal of the continuous phase transition is
difficult to be detected in the weak disorder regime for a
finite lattice size. There seems to exist a finite-size-dependent
threshold value of the quenched disorder amplituder [43].

This fact is also reflected in the dynamic processes. For a
small value ofr, the dynamic system looks like it is under-
going a first-order phase transition. For a lattice sizeL
=280 and a maximum updating time 10 000, the threshold
value is aboutrc=1.30. Forr . rc, the typical behavior of a
second-order phase transition can be observed. For example,
the relevant observables exhibit a power-law behavior at the
transition temperatureindependent of the initial conditions.
This is shown forr =3 in Fig. 1. According to Schûlke and
Zheng[44], this fact provides a evidence that a second-order
phase transition is induced.

In other words, one will not observe any power-law be-
havior if the phase transition is a standard first-order one. If
the first-order transition is weak, an approximate power-law
behavior may appear at a certain temperature, but this pseud-
ocritical temperature is initially condition dependent[44].
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B. Quench with disorder start

Now let us concentrate our attention on the dynamic pro-
cess with a completely disordered initial state. In Fig. 2, the
second moment and autocorrelation with a disordered start
are displayed forr =3, 4 and 10 with solid lines on a log-log
scale. For the second moment, a power-law behavior is ob-
served after a microscopic time scaletmic,100 or 200 Monte
Carlo time steps. Corrections to scaling and the crossover
effects are negligibly small even forr =3.

For the autocorrelation, there are some corrections to scal-
ing or crossover effects forr =3, 4 up to a time aroundtmic
,800. Forr =10, however, a nearly perfect power-law be-
havior is seen starting fromtmic,200.

In order to further confirm our results, some simulations
up to a maximum time 150 000 have been performed and the
samples for an average are 3000. In Fig. 3(a), the autocorre-
lation is displayed. The power-law behavior is convincingly
extended.

In Table I, the indicesy and l in Eqs. (14) and (15)
measured from Fig. 2 are listed. If we may obtain the critical

exponentu in some ways—e.g., from a dynamic evolution
corresponding to Eq.(17)—we will be able to estimate both
the dynamic exponentz and the static exponentb /n from y
andl, respectively. In Ref.[18], an effort was made to mea-
sure the exponentu. However, the obtained values are not
compatible with our simulations. In other words, if we take
the value ofu=0.203 forr =10 from there, the resulting dy-
namic exponentz and static exponentb /n are not consistent
with other measurements in this paper and in simulations in
equilibrium.

In Ref. [18], the magnetization(order parameter) is de-
fined as the maximum value of the eight components of the
Potts spin. This definition is good in simulations in equilib-
rium, since it help reduce the errors. However, it becomes
problematic in a nonequilibrium state witha specialized
direction—e.g., starting from an initial magnetizationm0
=1.0 or a small but nonzero initial value in a certain compo-
nent of the Potts spin. Actually, with this definition of the
magnetization, its dynamic evolution does not depends on
whether a small nonzero initial value at a certain direction of

FIG. 1. The second-order phase transition induced by disorder at the disorder amplituder =3. (a) The initial condition is completely
disordered. The second momentMs2dstd is plotted vst on a log-log scale forK+=0.721 525,Kc=0.717 936, andK−=0.714 346 withL
=280. (b) The initial condition is completely ordered. The magnetizationMstd is plotted vst on a log-log scale forK+=0.721 525,Kc

=0.717 936, andK−=0.715 064 withL=280. Obviously, in both cases the observables reach a power-law behavior at the transition pointKc.

FIG. 2. The second moment and autocorrelation at the transition temperature with a disordered start.(a) Ms2dstd plotted vst on a log-log
scale. Solid lines are from numerical data with a lattice sizeL=280. Dashed lines show the power-law fits. For clarity, the data ofr =3 have
been shifted up by a factor of 2.(b) Astd plotted vst on a log-log scale. Solid lines are from numerical data with a lattice sizeL=280. Dashed
lines show the power-law fits.
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the Potts spin is given, and italways increases as time
evolves.

With our definition of the magnetization, we have also
tried to simulate the dynamic process starting from a disor-
dered state but with a small nonzero initial magnetization. It
turns out that the magnetization drops to zero already in an
early time. This usually indicates that the exponentu is very

close to zero or negative. Indeed, according to our estimation
in the next subsection(see Table I), u=0.092s5d, 0.085(6),
and 0.061(4) for r =3, 4, and 10, respectively, apparently
much smaller thanu=0.353s6d, 0.262(4), and 0.203(3) for
r =2, 5, and 10 estimated in Ref.[18]. However, from some
other examples[31,32,45], u=0.092 seems not that small to
be detected. This point remains a little puzzling. Probably, it
might be related to the disorder or many components of the
Potts spin.

To further clarify the the dynamic scaling behavior, we
examine the spatial correlation functionCsx,td and plot the
data collapse forr =10 in Fig. 3(b). According to Eq.(16),
the spatial correlation function at different times may col-
lapse onto each other ifx and Csx,td are rescaled suitably
with the exponentz and b /nz. This is indeed the case as
shown in Fig. 3(b). The valuesz=4.57 andb /n=0.157 used
here will be confirmed in the next subsection.

C. Quench with ordered start

To complete our study and provide estimates of all the
critical exponents, we now turn to a dynamic process starting
from a completely ordered state—i.e.,m0=1.0. The fluctua-
tion of the dynamic variables in this process is less than that
with a disordered start. However, the dynamic evolution is
somewhat slower and corrections to scaling are also rela-
tively stronger.

In Fig. 4, the magnetization and Binder cumulant ofr
=3, 4 with an ordered start are displayed with solid lines on
a log-log scale. The corrections to scaling or crossover ef-
fects are visible up to aroundtmic,1000. If one measures the
exponentsc1 andc2, up to only a few hundred Monte Carlo
time steps, there will be a discrepancy of about 20%.

For r =10, the corrections to scaling are somewhat less but
still not negligible within some hundred time steps. In order
to make our results more convincing, as an example, we
have performed the simulations forr =10 up to a maximum
time t=150 000. This is shown in Fig. 5.

In Table I, the estimated values ofc1 andc2 are given in
comparison with those from Ref.[18]. The discrepancy be-

FIG. 3. (a) The autocorrelation with an disorder start forr =10 plotted vst on a log-log scale. The lattice size isL=280. The solid line
is with 3000 samples, and the circled line is the same as that in Fig. 2(b). (b) Data collapse of the correlation functionCsx,td with a
disordered start. Solid lines are fort=150, 300, 600, 1200, 2400, 4800, 9600(from below). Crosses fitted to the curve at a timet are the data
at t /2, but rescaled suitably according to Eq.(16) with z=4.57,b /n=0.157.

TABLE I. The critical exponents of the 2D eight-state RBP
model with different disorder amplituder, measured from the scal-
ing functions ofAstd, Ms2dstd, Mstd, ]t ln Mst ,td andUstd, respec-
tively, starting from both the ordered and disordered initial states.
Some results in the literature are also listed for comparison. The
results of[17] are obtained with a self-dual continuous distribution
of the couplings, which may be considered corresponding to abig r.

Exponent m0 r =3 r =4 r =10

l=d/z−u 0.0 0.572(3) 0.508(5) 0.376(3)

y=sd−2b /nd /z 0.552(2) 0.496(2) 0.369(1)

c1=b /nz 1.0 0.0560(4) 0.0485(5) 0.0343(2)

cl =1/nz 0.438(9) 0.373(8) 0.226(5)

c2=d/z 0.669(8) 0.593(4) 0.428(6)

z=d/c2 2.99(4) 3.37(3) 4.67(7)

b /n=sd−yzd /2 0.169(9) 0.163(6) 0.156(11)

z=d/ sy+2c1d 3.01(2) 3.37(2) 4.57(2)

b /n=c1z 0.169(2) 0.164(2) 0.157(2)

1/n=clz 1.32(3) 1.26(3) 1.03(3)

u=d/z−l 0.092(5) 0.085(6) 0.061(4)

b /n 0.160(4) [17]

1/n 1.01(2) [17]

y 0.438(6) [18]

c1 0.0390(6) [18]

c2 0.518(9) [18]

u 0.203(3) [18]
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tween our results and those of Ref.[18] is about 15%–20%.
The errors in Table I are not only statistical errors. In some
cases, errors induced by corrections to scaling have been
taken into account when they are comparable or bigger than
statistical errors. To achieve even more accurate results, in
principle, we may think about to introduce some ansatz to
describe the corrections to scaling—e.g., as done in Ref.
[46]. However, we could not succeed, probably because the
corrections to scaling are somewhat strong and the four-(or
more-) parameter fit is not stable or we have not found a
correct ansatz.

Finally, we perform simulations at temperatures around
the transition point to approximate the differentiation of
ln Mst ,td. Then we may estimate the indexcl =1/nz from
Eq. (10). The curves are plotted in Fig. 6. As usual, some
extra corrections may arise from the approximation of a dif-
ferentiation with a difference, and the errors are also a little
bigger than those of other observables. Taking into account
that it is not so easy to estimate the exponentn, we are
satisfied at moment with our results.

In the first sector of Table I, we summarize all our mea-
surements of the indicesl, y, c1, cl and c2. Since we are
about to determine four critical exponentsz, b /n, 1 /n andu

from these five independent measurements of the indices, we
may have different ways to do it.

(1) Fromc2, we may independently estimate the dynamic
exponentz. With z as an input, we obtain the static exponents
b /n and 1/n and the dynamic exponentu from c1, cl andl
respectively. The measurement ofy provides an independent
check of the exponentb /n.

(2) We forget aboutc2, and determinez from y andc1, and
then proceed to estimate other exponentsb /n, 1 /n and u
from c1, cl, andl, respectively.

The results of the second approach and a part of the re-
sults of the first approach are given in the second sector of
Table I. The third sector includes some measurements in
Refs. [17,18] for comparison. In Ref.[17], simulations are
performed for a self-dual continuous distribution of the cou-
plings, and it may be considered corresponding to abig r.

In Table I, we may first observe that different methods for
estimatingz and b /n yield consistent results within the er-
rors. This provides us confidence that our results are reliable.
However, the determination ofz from y and c1 is more ac-
curate. Therefore, it is used for calculatingb /n, 1 /n, and
u—i.e., following the second approach above. In addition,
we should mention that the error ofb /n estimated fromc1 is

FIG. 4. The magnetization and Binder cumulant with an ordered start.(a) Mstd plotted vst on a log-log scale. Solid lines are forr =3 and
4 with a lattice sizeL=280. Dashed lines show the power-law fits. For clarity, the curve ofr =3 has been shifted up by a factor of 1.2.(b)
Ustd plotted vst on a log-log scale. Solid lines are forr =3 and 4 with a lattice sizeL=280. Dashed lines show the power-law fits.

FIG. 5. The magnetization and Binder cumulant with an ordered start forr =10. (a) Mstd plotted vst on a log-log scale. The solid line
is obtained with a lattice sizeL=280, and the dashed line shows the power-law fit.(b) Ustd plotted vst on a log-log scale. The solid line is
obtained with a lattice sizeL=280 and the dashed line shows the power-law fit.
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smaller than that fromy. This is because in the latter case
b /n is expressed as a difference ofd andyz, and bothd and
yz are much bigger thanb /n.

On the other hand,b /n shows little dependence on the
disorder amplituder. This is consistent with the results in
Refs.[15,16]. The valueb /n=0.157s2d for r =10 is in good
agreement withb /n=0.153s3d for r =10 in Ref. [27] and
b /n=0.160s4d for a big r in Ref. [17], and clearly different
from b /n=0.125 of the 2D Ising model.

Our values of 1/n show a visible dependence onr. It is
qualitatively similar to the numerical results for the three-
state RBP model[15]. This kind of phenomenon seems to be
typical for physical systems with disorder. Asr increases,
1/n tends to 1.0, the Ising value in two dimensions. Such
trend is also reported for abig r in Ref. [17].

Another new result in our simulations is the estimate of
the dynamic exponentz. With disorder, the dynamic expo-
nent z depends on the disorder amplituder and is signifi-
cantly bigger thanz=2.165 of the 2D dynamic Ising model
[32,38]. For r =10, the valuez=4.57 indicates that the dy-
namics is rather slow. It is clear that the 2D dynamic RBP
model is not in the same dynamic universality class as the
2D dynamic Ising model. Further evidence is the small val-
ues ofu from 0.061 to 0.092, compared withu=0.191 of the
2D Ising model[32,47].

Comparing our results forr =10 with those in Ref.[18],
one finds a discrepancy of 15%–20% for the indicesy, c1,
andc2, while the measurement ofu in Ref. [18] seems prob-
lematic. Theoretically, the exponentu governs the initial in-
crease of the magnetization in Eq.(17). In Ref. [18], the
magnetization is defined as the maximum value of the eight
components of the Potts spin. Even if the initial magnetiza-
tion is set tom0=0, the magnetization with that definition
will increase. Therefore, the resulting exponent does not cor-
respond tou, and it is rather close tosd−2b /nd /2z. For the
case ofm0=0, the definitions of the magnetization in Ref.

[18] and in the present paper yield almost the same results,
since there are no specialized directions of the Potts spins in
the dynamic process. For the case ofm0=1, there is some
difference between two definitions of the magnetization, but
it is not significant(about 2%–3% within our simulations),
since the component of the Potts spin withm0=1 dominates
the dynamic process. Therefore, the discrepancy of 15%–
20% for the indicesy, c1, andc2 in Ref. [18] is mainly from
corrections to scaling induced by disorder.

IV. CONCLUSION

In conclusion, with large-scale Monte Carlo simulations
we have investigated the critical dynamic behavior in non-
equilibrium dynamic processes starting from both ordered
and disordered states for the two-dimensional eight-state
random-bond Potts model. With the dynamic approach, a
second-order phase transition is confirmed and the dynamic
scaling behavior far from equilibrium is systematically veri-
fied. Both the dynamic and static critical exponents are esti-
mated with relatively good accuracy.

The static exponentb /n shows little dependence on the
disorder amplituder, and its valueb /n=0.157s2d for r =10
is in agreement with that in Refs.[17,27]. The dynamic ex-
ponentz and static exponent 1/n vary with the strength of
disorder. This scenario is similar to that of 1/n in the three-
state RBP model[15]. The dynamic exponentz is much big-
ger than that of the 2D Ising model. The exponentu esti-
mated indirectly in this paper is much smaller than that in
Ref. [18].
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FIG. 6. ]t ln Mstd plotted vst on a log-log scale with an ordered start.(a) Solid lines are forr =3 and 4 with a lattice sizeL=280. Dashed
lines show the power-law fits.(b) The solid line is forr =10 with a lattice sizeL=280 and the dashed line shows the power-law fit.
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